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Some integrals involving Legendre polynomials and associated 
Legendre functions 

L D Salem? and H S WioS 
Centro Atdmico Barilochel and lnstituto Balseiroll, 8400 SC de Bariloche, RN, Argentina 

Received 28 November 1988 

Abstract. The definite integrals J!, P , (x)  Pt;(x) d x  are calculated by explicitly writing the 
Legendre polynomials and their associated Legendre functions in a suitable form. Selection 
rules derived from this approach are obtained. 

1. Introduction 

When studying the linear response of an axially symmetric finite system (such as an 
atomic nucleus) under the action of an external field with a definite multipolarity, say 
( A ,  * p ) ,  the need for evaluating integrals involving Legendre polynomials and their 
associated Legendre functions arises [ 13, i.e. 

Z(4 4 p )  = j;l dXP’(X)~T(X) 1=0,1,2,  . .  . ; O C p C A  =0,1,2,  . .  . (1.1) 

where PA(x)  and Py(x)  are defined by [2] 

1 = 0, 1 ,2 , .  , . 

dc” 
dx+ 

Pf(X) = (-  1)c” (1 - x’) kl’2 - Ph (x)  0 p A = 0,1, . . . . (1.3) 

Surprisingly, such integrals are not found in the literature [2-51, with the trivial 
exception of the case p = 0 where the orthogonality relation between Legendre poly- 
nomials can be invoked: 

f l  - L 
Z(1, A, 0) = J P l ( X ) P A ( X )  dX=- I ,A=0,1,2 , . . . .  (1.4) 

-1 21 + 1 

However, selection rules, which tell us immediately when the integral (1.1) vanishes, 
can be obtained. The first one is related to the parity of the integrand and this results 
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in 

I ( 4 A , p ) = O  when I S A  - p  is odd. (1.5) 

Another selection rule valid for even values of p arises from the orthogonality of 
the P , ( x )  to all polynomials of degree less than 1, which gives 

I ( [ ,  A, = 0 when 1 > A and ,U =2M. (1 -6) 

This paper is organised as follows. In § 2 we derive the selection rules (1.5) and 
(1.6), and work out (1.1) when p is even. In § 3 we proceed for the case p odd by 
writing the integrand of (1.1) as (1 - x2)1'2 times a polynomial in x. Finally, in § 4, we 
summarise the results and present explicit examples in order to show the general trend. 

2. Selection rules and case p even 

According to (1.2) and (1.3) we have explicitly, for P l ( x )  and P r ( x ) ,  

1 = 0, 1,2,  , 

Y 

P f ( X )  = Q j X A - w - 2 " + 2 J  (1 - x y  O G p G A ,  A=0,1,  . . .  (2.2) 

where L=[Z/2] and v = [ ( A  - p ) / 2 ]  ( [ X I  stands for the integer part of x ) ,  and the 
coefficients ai and a;. are given by 

j = O  

i = 0, 1, . . . , L 

(2A -2v+2j)!  
( v - j ) ! ( A  - v + j ) ! ( A  -,U -2v+2j)!  

(- 1) w -  Y+J 
cy. = j =O,  1 , . . . ,  V .  2A 

(2.3) 

(2.4) 

From (2.1) and (2.2) we find the parity of the integrand in (1.1) to be (-l) '+A-F 
and this results in the first selection rule expressed by (1.5). We remark that this 
selection rule is valid for the whole range of 1, A and p values. 

The associated Legendre function P r ( x )  can always be written as 

P f ( x )  = F Y ( x ) ( l  - x y - - M  (2.5) 

where M = [p /2 ]  and F f ( x )  is a polynomial of degree A when p is even and A - 1 
when p is odd. Explicitly, 

j = O  k = O  

M + U  
= 2 bqX2q+A-P-2v 

q = o  

where the coefficients P k  and b, are given by 

P k  = ( - l ) - k (  Y )  k = O , l , .  . , , M 
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min(9, 

b9= C a j P 9 - j  
j = m a x { O ,  9 - M )  

( - 1 P - Y -  q min{q, U )  c - - 
2A j = m a x { O , q - - M )  

(2.8) 

( " )  (2A - 2 ~ + 2 j ) !  
( Y - j ) !  ( A  - v + j ) !  ( A  - p - 2~ + 2 j ) !  

X 
- j  

q = O , l ,  . . . ,  M + Y .  

The parity of F ? ( x )  is that of PY(x), say (-1)""'", as can be seen from (2.6). 
In particular, when F -- 2 M  we have v = [ h / 2 ]  - M = A - M which yields 

' 
P?(x) = F ? ( x )  = c b 9 ~ 2 9 + A - 2 " .  

9=0 

Inserting this expression in ( 1 . 1 )  we have 

I(1, A ,  p = 2 M )  = b, P/(x) dx. 
9=0 

With the aid of the tabulated integrals [ 2 , 4 ]  of the form 

(2.10) 

when s + 1 is odd or s < 1 

when s + 1 is even and s 3 1 
[i( s + l ) ] !  s !  2'+' (" [$(s - l ) ] !  (s + 1 + l ) !  

j:, x'Pl(x) d x  = 

and replacing this result in (2.10), the selection rule given in (1.6) follows. Moreover, 
for 1s A and l+h odd the integral of ( 1 . 1 )  vanishes as each term in (2.10) does; this 
i s  also in accord with the selection rule ( 1 . 5 ) .  

Meanwhile for 1 S A and 1 + A even, we have 

I( 1, A,  p = 2 M )  

i - - 21+1-A(-1) 1 - ~ / 2  

9 = ( / - ~ ) / 2 + 1  

[ q  -A+ ( A  + 1 ) / 2 ] ! ( 2 q  + A - 2 A ) !  
[ q  -A+ ( A  - 1 ) / 2 ] ! ( 2 q  + I+ A -2A+ l ) !  

X 

mlntq,  2 - 1 * / 2 )  ( , , /2) (2A - 2 A + p + 2 j ) !  
x c  

,=max{0 ,9 -+ /2 )  - j  ( A  - / ~ / 2  - j )  ! ( A  + A + ~ / 2  + j )  ! ( A  - 2 A  + 2 j )  ! 
(2.11) 

For the particular case p = 0 this equation verifies the orthogonality relation (1.4). 

two possible cases left by the parity selection rule. 

I (  1 = 2L, A = 2A,  p = 2 M )  

Just for the sake for clarity we explicitly present the results given above for the 

( a )  When 1 = 2 L  and A = 2 A  we have 
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3. Case p odd 

When p is odd (i.e. p = 2 M  + 1) we can still integrate (1.1) by expanding the integrand 
as (1 - x ~ ) ” ~  times a polynomial (see (2.5)). Moreover, according to the selection rule 
( 1 3 ,  for those values of 1 and A such that I +  A is an even number, the integral vanishes. 
Thus we concentrate on the calculation of (1.1) when I + A  is odd; using (2.1) and 
(2.9) we get 

r=O J - I  

where 
m i n { r ,  L )  

i=max{O,  r - (  M + u ) }  
c, = c aibr-i 

(21 - 2L+ 2i) ! ( - 1 ) F - p - L - r  m i n ( r ,  L) c - - 2/+A 
i=max{O,  r - ( M + v ) }  ( L  - i )  ! ( 1  - L+ i )  ! ( I -2L+ 2i) ! 

m i n { i - i , v )  (2A - 2 ~ + 2 j ) !  
j = m a x { O , r - i - M )  (v-j)! ( A  - v + j ) !  ( A  -/.L - 2 ~  +2j)! 

r = 0 , 1 ,  ..., L + M + v .  

In (3.1) we find the tabulated [4] integrals of the form 

7r(2s)! 
22S+1s!(s+ l ) ! .  

j:l dx x2.‘( 1 - x ~ ) ” ~  = 

Replacing these results in (3.1) we obtain 

I( 1, A, p = 2M + 1) 

- ( - 1 ) F - ” - L T  L + M + u  ( -1)’-r(2r)! 
22rr!  ( r  + 1) ! 2/+A+l - 

r = O  

(21 - 2L + 2i) ! m i n { r , L )  

X c 
i = m a x { O , r - (  M + ” ) )  (L-  i)! (1 - L +  i)! ( I  -2L+2i)!  

j = m a x { O , r - i - M }  ( ~ - j ) ! ( A - ~ + j ) ! ( A - p - 2 ~ + 2 j ) !  
m i n { i - i , i . }  (2A - 2 ~ + 2 j ) !  
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Recalling that, when p = 2 M  + 1 ,  1 + A  should be an odd number for the integral 
in (1 .1 )  not to vanish, just for the sake of clarity we explicitly write the result given 
above for the two possible cases. 

I (Z=2L ,  A = 2R+ 1 ,  p = 2 M +  1 )  

( a )  When 1 = 2 L  ( I  is even) and A = 2R+ 1 ( A  is odd) we have 

( - l ) ( p - A - ' ) r  (I+A-1)/2 ( - 1 ) - r ( 2 ~ ) !  c 
r = O  22rr! ( r  + I ) !  

min{r,l/2) ( 1  + 2 i ) !  

- - 2/+A+l 

X c 
i=mdx{O,r-(h-1)/2) (1 /2  - i ) !  (1/2+ i ) !  ( 2 i ) !  

( A + p + 2 j ) !  
[ ( A  - p ) / 2  - j ]  ! [ ( A  + p ) / 2  + j ]  ! ( 2 j ) ! *  

(3.5) 

X 

( b )  When 1 = 2L+ 1 ( I  is odd) and A = 211 ( A  is even) we have 
1(1=2L+ 1, A = 2 R ,  p = 2 M +  1 )  

( - 1 ) ( p - A - ' ) r  ( / + A  - 3 W  (- 1 ) - r  ( 2  r + 2 )  c - - 
r = O  2Zr( r + 1) ! ( I  + 2 )  ! 2/+A+3 

min{ r, ( I  - 1 ) /  2) ( I  +2 i+  l ) !  
x c  

r = m a x { o , r - ~ / 2 + l )  [ ( l - 1 ) / 2 -  i ] ! [ ( Z + 1 ) / 2 +  i ] ! ( 2 i + 1 ) !  

X 

( A  + p + 2j + 3 ) !  
[ ( A  - p - 3 ) / 2  - j ] !  [ ( A  + p + 3 ) / 2 + j ] !  (2 j  + 3 ) ! '  

X (3.6) 

4. Summary 

Although the results are somewhat involved we have obtained closed expressions for 
integrals of products of Legendre polynomials and their associated Legendre functions 
for all possible values of the (1 ,  A, p }  indices. In table 1 we indicate which equation 
should be used (or the result when it is null) in order to evaluate each integral, 
depending on the parity of the indices 1, A and p. 

Table 1. Result or equation to be used in evaluating I (1 ,  A, p )  according to the parity of 
each of the values of 1, A and p. 

(2.12) 
0 
0 

(3.5) 
0 

(3 .6 )  
(2.13) 
0 
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Table 2. Non-null values obtained for i( 1, A, w )  when 1 c p = A = 3 and 0 < I < I,,, . The 
maximum value of I included, namely I,,,, corresponds to cutoff in the sum rule of (4.2): 
~ i - s ~ ~ ( ~ ~ J <  

3 1 0 
2 
4 
6 
8 

2 1 
3 

3 0 
2 
4 

0.224 947 
0.880 243 

-0.405 958 
-0.087 1252 
-0.037 6449 

0.836 66 
-0.547 723 

0.871 215 
-0.487 024 

0.061 257 

0.0506 
0.8254 
0.9902 
0.9978 
0.9992 

0.7000 
1 .oooo 
0.7590 
0.9962 
0.9999 

Table 3. As table 2 for A =4. 

4 1 1 
3 
5 
7 
9 

2 0 
2 
4 

3 1 
3 
5 

4 0 
2 
4 

-0.285 172 
-0.843 989 
-0.439 41 

0.100 258 
0.045 073 

0.316 228 
0.707 107 

-0.632 456 

-0.754 494 
0.648 286 

-0.101 584 

0.836 66 
-0.534 522 

0.119 523 

0.0813 
0.7936 
0.9867 
0.9968 
0.9988 

0.1000 
0.6000 
1 .oooo 
0.5693 
0.9895 
0.9999 

0.7000 
0.9857 
1 .oooo 

To evaluate the expression so far obtained we have written a code (available on 
request) in the algebraic programming language SMP [ 6 ] .  In order to show the general 
trend we present in tables 2-4, and for different values of the indices (1, A, p} ,  the 
related quantity 

(21+ 1) (2A + 1) ( A  - p ) !  

2 ( A + p ) !  
1 

= [-, dx @/(x)@r(x) (4.1) 

which can be interpreted as the lth coefficient in a (normalised) Legendre polynomial 
expansion of the (normalised) Legendre associated function: 
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Table 4. As table 2 for A = 5 .  

A P I f(1, A, P I  SA, ( 1 )  

5 1 0 
2 
4 
6 
8 

2 1 
3 
5 

3 0 
2 
4 
6 
8 

4 1 
3 
5 

5 0 
2 
4 
6 

0.111 465 
0.295 975 
0.817 697 

-0.463 509 
-0.110 547 

0.396 412 
0.605 53 

-0.690 066 

0.361 187 
0.555 251 

-0.736 482 
0.136 078 
0.0169 972 

0.686 607 
-0.699 206 

0.199 205 

0.807 638 
-0.564 354 

0.170 361 
-0.0142 186 

0.0124 
0.1000 
0.7686 
0.9835 
0.9957 

0.1571 
0.5238 
1.0000 

0.1305 
0.4388 
0.9813 
0.9997 
0.9999 

0.4714 
0.9603 
1 .oooo 
0.6523 
0.9708 
0.9998 
0.9999 

where the tilde was included to indicate normalisation. Because of norm conservation, 
we get a condition on the sum: 

/ 

S , + ( l ) =  l f ( l ' , A , p ) / 2 z  1. (4.2) 
/'=O 

This result is also included in tables 2-4. For p even, the sum runs up to 1 = A, as 
higher I' contributions vanish (see selection rule (1.6)). On the other hand, for p odd, 
(4.2) is extremely useful for estimating a cutoff point beyond which the Z(1, A, p )  may 
be neglected for a given approximation. We do not include in tables 2-4 those cases 
for which the integral vanishes according to the selection rules derived in 0 2. 

As a final remark we note that the same approach outlined above can be used to 
evaluate integrals involving two associated Legendre functions, a result which is also 
missing in the literature, and which should (perhaps) be looked at for the sake of 
completeness. Nevertheless, we have not done it here as it was not relevant to the 
study of excitation modes in deformed systems, which was our primary interest. 
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